Review Article
Mechanism of Oxidative Stress in Neurodegeneration
Sonia Gandhi and Andrey Y. Abramov
Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK

Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 428010, 11 pages
doi:10.1155/2012/428010

Nafith Abu Tarboush
DDS, MSc, PhD
natarboush@ju.edu.jo
www.facebook.com/natarboush

OXIDATIVE STRESS & NEURODEGENERATION
OUTLINE

- Oxidative Stress & Neurodegeneration
- Oxygen, Brain & Oxidative Stress
- ROS Producers in Mammalian Brain
- The Antioxidant System
- Oxidative Stress in Neurodegenerative Diseases (AD & PK)
- Mechanisms of Oxidative Stress: ROS Production by Mitochondrial Dysfunction
- Mechanisms of Oxidative Stress: ROS Production via NADPH Oxidase
- Use of Antioxidant Therapy in Neurodegenerative Disease
Oxidative Stress & Neurodegeneration

- Oxidative stress is important in the etiology of a variety of late onset neurodegenerative diseases
- **Aging** has been established as the most important risk factor (Alzheimer’s disease (AD), & Parkinson’s disease (PD))
- **Aging:** cumulative oxidative stress leads to mitochondrial mutations, mitochondrial dysfunction, & oxidative damage
- Is oxidative stress a phenomenon of dysfunctional & dying neurons, or does oxidative stress itself cause the dysfunctionality/death of neurons?
- How does a global event such as oxidative stress result in the selective neuronal vulnerability seen in most neurodegenerative diseases?
- & finally, if oxidative stress is truly fundamental to pathogenesis, then why has the use of antioxidant therapy been thus far largely unsuccessful in such diseases?
In order to address these questions:
- Definition of oxidative stress
- Show how ROS is generated in the human brain
- The antioxidant defense mechanisms
- Is there an evidence that oxidative stress can be found in neurodegenerative disease?
- Is oxidative stress truly pathogenic in disease models?
- What treatment experimental studies have been performed?
Oxygen, Brain & Oxidative Stress

- **Oxygen** is essential for the normal function (respiration, high redox potential, excellent oxidizing agent)
- Neurons & astrocytes, are responsible for the massive consumption of O₂ (~2% vs. >20%)
- The state of **hyperoxia** produces toxicity (including neurotoxicity)
- Partially reduced forms of oxygen are highly active (**ROS**)
- Varieties of (ROS): superoxide (**O•−2**), hydrogen peroxide (**H₂O₂**), & the hydroxyl radical (**OH•**) (the most reactive)
- The modern use: radicals & non-radicals (**O₃, O₂, OH−**)

What do they do? Chemically interact with biological molecules

- Aerobic organisms survive its presence only because they contain **antioxidant defenses**
Oxygen, Brain & Oxidative Stress

- Brain cells require **more effective** antioxidant protection:
 - *They exhibit higher* (10-fold) oxygen consumption
 - *Non-dividing* cells (long life duration)
 - *Nitric oxide has a prominent role in the brain* (*RNS*)

- **Oxidative stress**: is a condition in which the balance between production of ROS & level of antioxidants is significantly disturbed & results in damage to cells by excessive ROS

- ROS may target several different substrates in the cell, causing protein, DNA, RNA oxidation, or lipid peroxidation
Oxygen, Brain & Oxidative Stress

Reactive oxygen species (ROS)

- Oxygen (O_2) + 1e → Superoxide (O_2^-) → Phagocyte oxidase (phox) → Superoxide dismutase → Hydrogen peroxide (H_2O_2) + 1e → Hydroxyl radical ($OH^•$) → Water (H_2O)

Reactive nitrogen species (RNS)

- Guanidino nitrogen of l-arginine → Nitric oxide synthase (iNOS) → Nitric oxide (•NO) → RSH + O_2 → NO$_2^-$ → NO$_2^-$ → Nitrite → •NO$_2$ → Nitrogen dioxide → NO$_3^-$ → Nitrate

- RSH sulphydryl → H$^+$ + e → RSNO → Nitrosothiol
Oxygen, Brain & Oxidative Stress

- The peroxidation products of **polyunsaturated fatty acids**, especially **arachidonic acid & docosahexanoic acid** which are abundant in brain, are **malondialdehyde & 4-hydroxynonenal** (markers)

- ROS attacks **protein**, oxidizing both the backbone & the side chain, which in turn reacts with amino acid side chains to form **carbonyl functions** (oxidation of **lysine, proline, arginine, & threonine** can yield aldehydes and ketones)

- ROS attacks **nucleic acids** in a number of ways, causing DNA-protein crosslinks, breaks in the strand, & **modifies purine & pyridine bases** resulting in DNA mutations
Oxygen, Brain & Oxidative Stress

<table>
<thead>
<tr>
<th>PROTEINS</th>
<th>LIPIDS</th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-SH groups</td>
<td>malondialdehyde</td>
<td>2,6-diamino-4-hydroxy-formamidopyrimidine</td>
</tr>
<tr>
<td>GSH/GSSG</td>
<td>8-isoprostaglandin</td>
<td>4,6-diamino-5-formamidopyrimidine</td>
</tr>
<tr>
<td>3-nitrotyrosine</td>
<td>F<sub>2</sub>-isopropane</td>
<td>8-hydroxyadenine</td>
</tr>
<tr>
<td>3-chlorotyrosine</td>
<td>TBARS</td>
<td>8-hydroxydeoxyguanosine</td>
</tr>
<tr>
<td>dityrosine</td>
<td>conjugated dienes</td>
<td>8-hydroxyguanosine</td>
</tr>
<tr>
<td>carbonylated proteins</td>
<td>4-hydroxy-2-nonenal</td>
<td>5-hydroxycytosine</td>
</tr>
</tbody>
</table>
ROS PRODUCERS IN MAMMALIAN BRAIN
NADPH Oxidase

- A multi-subunit enzyme complex
- Is a member of the NOX gene family
- Also called NOX\textsubscript{2} & phagocytic oxidase (PHOX)
- Seven NOX genes have been identified
- The most expressed of the NOX enzymes in the brain is NOX\textsubscript{2}
- The enzyme transfers the proton across the membrane, & the end product of the enzyme is superoxide
Xanthine Oxidase

- It is a complex **molybdo-flavo-enzyme**
- A key enzyme of **purine catabolism**
- XO catalyses the oxidation of a wide range of substrates & pass electrons to molecular oxygen to produce uric acid, superoxide, & hydrogen peroxide
Mitochondria

- Mitochondria (electron transport chain-ETC), in contrast to other cellular producers of ROS, **generate free radicals all the time**
- Mitochondria, which harbor the bulk of oxidative pathways, **leak single electrons to oxygen**
- Depending on the metabolic conditions, isolated mitochondria **produces superoxide** in e.x.;
 - **Respiratory complex I**
 - **Complex III**
 - **α-ketoglutarate dehydrogenase**
- The production of **superoxide is dependent** on the value of mitochondrial membrane potential
Inhibition of neuronal respiration leads to a significant increase in ROS in mitochondria

Overproduction of ROS in mitochondria leads to imbalance & induce oxidative stress & neurodegeneration

This effect can be reduced by mitochondrial uncouplers

Significant neuroprotection by mild uncoupling with UCP2 in cerebral stroke

Mutations in mitochondrial complexes I–IV leads to activation of ROS production & neuronal cell death
Monoamine Oxidase

- Flavoenzymes
- Mitochondrially located (outer membrane)
- Monoamine oxidase A & B (MAO A & B); ~70% identical
- Their role in oxidative catabolism of important amine neurotransmitters (serotonin, dopamine, & epinephrine)

- Expressed in neurons (MAO-A) & glial cells (MAO A & B)
- MAO breaks down monoamines using FAD & results in the production of aldehydes. The FAD-FADH2 cycle generates hydrogen peroxide
THE ANTIOXIDANT SYSTEM - ENZYMES
Superoxide Dismutases

- Play a crucial role in scavenging O_{2}^{-2}
- Specialized in eliminating superoxide anion radicals
- Three distinct isoforms:
 - Copper-zinc superoxide dismutase (Cu/Zn SOD)
 - Manganese superoxide dismutase (Mn SOD)
 - Extracellular superoxide dismutase (EC SOD)
Glutathione Peroxidases

- A family of multiple isozymes
- Catalyze the reduction of H_2O_2 to water using reduced glutathione (GSH) as an electron donor

 \[(H_2O_2 + 2GSH \rightarrow GS-SG + 2H_2O) \]
- In mammalian tissues, there are four major selenium-dependent glutathione peroxidases
- GPX1 is known to localize primarily in glial cells, in which GPX activity is tenfold higher than in neurons
Catalase

- Catalase is a **ferriheme**-containing enzyme
- Converts **hydrogen peroxide to water**
- It is localised in **peroxisomes** & may also be found in cytoplasm & mitochondria

\[
2 \text{H}_2\text{O}_2 \rightarrow 2 \text{H}_2\text{O} + \text{O}_2
\]
THE ANTIOXIDANT SYSTEM -
NON-ENZYMATIC ANTIOXIDANTS
GSH

- The main antioxidant in CNS
- The most abundant small molecule, non-protein thiol in cells
- Consists of a tripeptide
- Reduced GSH can **non-enzymatically act directly with free radicals**, notably superoxide radicals, hydroxyl radicals, nitric oxide, & carbon radicals for their removal
- GSH peroxidase & GSH reductase can act **enzymatically** to remove H₂O₂ & maintain GSH in a reduced state
Vitamin E

- A lipid soluble molecule with **antioxidant function** (mainly)
- It appears to neutralize the effect of peroxide & prevent lipid peroxidation in membranes
OXIDATIVE STRESS OCCURS IN NEURODEGENERATIVE DISEASES
Alzheimer’s disease

- The most common neurodegenerative disease, affecting approximately 16 million people worldwide
- Characterized by progressive neuronal loss associated with aggregation of protein as extracellular amyloid (βA) plaques, & intracellular tau tangles
- AD brains also show evidence of ROS mediated-injury;
 - Increase in levels of malondyaldehyde & 4-hydroxynonenal in brain & cerebrospinal fluid
 - Protein carbonyl moieties are increased in the frontal & parietal cortices, & hippocampus with sparing of the cerebellum
 - Increase in hydroxylated guanosine
Parkinson’s disease

- The second most common
- Characterized by progressive loss of dopaminergic neurons in the substantia nigra, & aggregation of the protein α-synuclein
- Concentration of PUFAs in the substantia nigra is reduced, while the levels of lipid peroxidation markers (malondialdehyde & 4-hydroxynonenal) are increased
- Protein oxidative damage in the form of protein carbonyls is also evident
- Increased levels of 8-hydroxydeoxyguanosine
Mechanisms of Oxidative Stress: ROS Production by Mitochondrial Dysfunction

- Mitochondrial pathology is evident in many neurodegenerative diseases including AD & PD
- The spectrum of **mitochondrial dysfunction** is vast;
 - *Respiratory chain dysfunction*
 - *Oxidative stress*
 - *Reduced ATP production*
 - *Calcium dysregulation*
 - *Mitochondrial permeability transition pore opening*
 - *Deregulated mitochondrial clearance*
ROS Production by Mitochondrial Dysfunction; PD

- A reduction in complex I activity in the substantia nigra
- The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to produce parkinsonian symptoms
- L-methyl-4-phenylpyridinium (MPP+), the active metabolite of MPTP, can block ETC (same site as rotenone)
- Rotenone or MPP+ also produces superoxide anions in sub-mitochondrial particles
- Mild uncoupling of mitochondria with UCP2 overexpression reduces ROS production (MPP+, rotenone)
- The identification of a number of PD-related genes that are strongly associated with mitochondrial function (PINK1, DJ-1, & Parkin)
Oxidative stress is a primary event in PD pathogenesis.

- Mutations in PINK1 (mitochondrial kinase) cause a recessive form of PD.
- PINK1 deficiency results in inhibition of complex I, reduced substrate availability, and rotenone-like increased production of ROS in mitochondria.
- Abnormal aggregation of protein is a characteristic feature of neurodegenerative disease; aggregation of the protein, α-synuclein, which accumulates in all PD brain.
- Mutations in α-synuclein gene cause a familial form of autosomal dominant PD.
- Expression of mutant α-synuclein in neurons results in increased ROS production.
- α-synuclein binds mitochondria and induce mitochondrial fragmentation.
ROS Production by Mitochondrial Dysfunction; AD

- A reduction in complex IV activity in mitochondria from the hippocampus
- Deregulation of calcium homeostasis;
 - βA causes increased cytoplasmic calcium levels & mitochondrial calcium overload, resulting in increase in ROS production & opening of the PTP
- βA directly interact with cyclophilin D (a PTP component) forming a complex in the mitochondria that has reduced threshold for opening
- Fragmented mitochondria are seen in AD hippocampus
Use of Antioxidant Therapy in Neurodegenerative Disease

- The rationale for the use of antioxidants as therapies is clear.
- The benefits of antioxidants in animal & cell models of disease was promising.
 - Vitamin E
 - Vitamin C
 - Coenzyme Q
Promising!

- **Vitamin E** supplementation in AD mouse model resulted in improved cognition & reduced βA deposition

- **AD**: Daily injections of **vitamin C** in mouse model significantly reduced memory deficits

- **PD**: **Coenzyme Q** has been shown to have multiple protective effects within the mitochondria

- **PD**: **CoQ protects** MPTP-treated mice from dopaminergic neuronal loss & also attenuated α-synuclein aggregation
There has been no proven benefit for the use of vitamin E &/or vitamin C in either AD or PD from large randomised controlled clinical trials.

Vitamin E clinical trials, CoQ10 trials, & glutathione trials in PD concluded that there were only minor treatment benefits in the CoQ trials that may have been due to improvement in the respiratory chain deficit rather than a direct antioxidant action.

None of the trials have shown significant benefit to warrant recommendation for use in the clinical setting!!!
Promising but!

- All animal models are limited in recreating the human disease
 - long-time frame
 - Gradual accumulation of age-related changes
- Antioxidants must be administered at an early stage where the process influences pathogenesis most
- The bioavailability of reducing molecules in the human brain in the doses used in animal models
- The effective targeting of such molecules to the mitochondria in human brain
- Several different producers of oxidative stress in each disease (need to be targeted separately but simultaneously)